Thursday, 20 July 2017

Função De Matlab Média Móvel


Eu tenho uma matriz de séries temporais de dados para 8 variáveis ​​com cerca de 2500 pontos (10 anos de sexta-feira) e gostaria de calcular a média, a variância, a aspereza e a curtose em média móvel. Digamos quadros 100 252 504 756 - Gostaria de calcular as quatro funções acima em cada um dos quadros (time-), diariamente - de modo que o retorno para o dia 300 no caso com 100 dias de quadro seria significante Kurtosis de desvio de variância do período dia 201-dia300 (100 dias no total). e assim por diante. Eu sei que isso significa que eu obteria uma saída de matriz, e o primeiro número de quadros seria NaNs, mas não consigo descobrir a indexação necessária para fazer isso. Perguntou Mar 24 14 às 0:07 Esta é uma questão interessante porque acho que a solução ideal é diferente da média do que é para as outras estatísticas da amostra. Eu forneci um exemplo de simulação abaixo que você pode trabalhar. Primeiro, escolha alguns parâmetros arbitrários e simule alguns dados: Para a média, use o filtro para obter uma média móvel: pensei inicialmente em resolver este problema usando conv da seguinte maneira: Mas como PhilGoddard apontou nos comentários, a abordagem do filtro evita a Necessidade do loop. Observe também que Ive escolheu para tornar as datas na matriz de saída correspondem às datas em X, então no trabalho posterior você pode usar os mesmos índices para ambos. Assim, as primeiras observações do WindowLength-1 no MeanMA serão nan. Para a variação, não consigo ver como usar qualquer filtro ou conv ou mesmo uma soma executória para tornar as coisas mais eficientes, então, em vez disso, eu executo o cálculo manualmente em cada iteração: Poderíamos acelerar as coisas levando ao fato de que já temos Calculou a média móvel média. Basta substituir a linha de loop dentro do acima com: No entanto, duvido que isso faça muita diferença. Se alguém pode ver uma maneira inteligente de usar o filtro ou o conv para obter a variável da janela em movimento, fique muito interessado em vê-lo. Eu deixo o caso de skewness e kurtosis para o OP, uma vez que eles são essencialmente o mesmo que o exemplo de variância, mas com a função apropriada. Um ponto final: se você estivesse convertendo o acima em uma função geral, você poderia passar em uma função anônima como um dos argumentos, então você teria uma rotina média móvel que funcione para escolha arbitrária de transformações. Final, ponto final: para uma seqüência de comprimentos de janela, basta fazer um loop sobre todo o bloco de código para cada comprimento de janela. Sim, a função de filtro é realmente melhor para o meio - mas eu queria fazer isso para várias funções diferentes, não só a média. Acabei de publicar minha resposta porque funcionou para mim e pensei que poderia ajudar alguém também. Ndash Dexter Morgan 15 de abril 14 às 12: 40Creado na quarta-feira, 08 de outubro de 2008 20:04 Atualizado em quinta-feira, 14 de março de 2013 01:29 Escrito por Batuhan Osmanoglu Acessos: 41021 Média em movimento em Matlab Muitas vezes me encontro na necessidade de promediar o Eu tenho que reduzir o ruído um pouco. Eu escrevi algumas funções para fazer exatamente o que eu quero, mas os matlabs criados na função de filtro funcionam muito bem também. Aqui vou escrever sobre dados em média 1D e 2D. O filtro 1D pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente de numerador para o filtro (b), o coeficiente de denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como funciona o filtro, você pode digitar: Aqui está uma implementação rápida e suja de um filtro médio 16 por 16 em movimento. Primeiro precisamos definir o filtro. Como tudo o que queremos é contribuição igual de todos os vizinhos, podemos usar apenas a função. Nós dividimos tudo com 256 (1616), uma vez que não queremos alterar o nível geral (amplitude) do sinal. Para aplicar o filtro, podemos simplesmente dizer o seguinte. Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso, Range está no eixo Y e o Azimuth é mapeado no eixo X. O filtro tinha 4 pixels de largura em alcance e 16 pixels de largura em Azimuth. Estou tentando completar um projeto de atribuição matlab com a seguinte pergunta: Escreva uma função chamada motionaverage que leva um escalar chamado x como um argumento de entrada e retorna um escalar. A função usa um buffer para armazenar as entradas anteriores e o buffer pode conter no máximo 25 entradas. Especificamente, a função deve salvar as 25 entradas mais recentes em um vetor (o buffer). Cada vez que a função é chamada, ele copia o argumento de entrada em um elemento do buffer. Se já houver 25 entradas armazenadas no buffer, ele descarta o elemento mais antigo e salva o atual no buffer. Depois de armazenar a entrada no buffer, ele retorna a média de todos os elementos no buffer. A solução que eu forneço é a seguinte: de acordo com a graduação automática, minha função funciona corretamente quando os valores 1-50 estão passando consecutivamente, mas falham quando os valores de uma onda sinusoidal barulhenta estão passando consecutivamente (o que foi informado que pode ser devido a alguns Tipo de erro de redondeamento). Eu ficaria grato se algum de vocês pudesse me fornecer algumas dicas sobre as possíveis etapas de erro no meu código (anexado acima). Agradeço antecipadamente

No comments:

Post a Comment