Os exemplos a seguir produzem uma média móvel dos valores WINDOW anteriores. Nós truncar o primeiro (WINDOW -1) valores desde que can8217t encontrar a média antes deles. (O comportamento padrão para convolução é assumir que os valores antes do início de nossa seqüência são 0). (Mais formalmente, construímos a seqüência y para a seqüência x onde yi (xi x (i1) 8230. x (em)) n) Isso faz uso da função de convolução numpy8217s. Esta é uma operação de média móvel de propósito geral. Alterar ponderações torna alguns valores mais importantes compensar apropriadamente permite que você visualize a média em torno do ponto em vez de antes do ponto. Em vez de truncar os valores, podemos corrigir os valores iniciais no lugar, como ilustrado neste exemplo: Hmmm, parece que esta prática de executar a função é realmente muito fácil de errar e tem promovido uma boa discussão sobre a eficiência da memória. I39m feliz por ter bloat se isso significa saber que something39s sido feito direito. Ndash Richard Sep 20 14 at 19:23 NumPys falta de uma determinada função específica do domínio é talvez devido à disciplina de Equipes Core e fidelidade à diretiva Prime NumPys: fornecer um tipo de matriz N-dimensional. Bem como funções para criar e indexar essas matrizes. Como muitos objetivos fundacionais, este não é pequeno, e NumPy faz isso brilhantemente. O SciPy (muito maior) contém uma coleção muito maior de bibliotecas específicas de domínio (chamadas subpacotes por SciPy devs) - por exemplo, otimização numérica, processamento de sinal (sinal) e cálculo integral (integrar). Minha suposição é que a função que você está depois está em pelo menos um dos subpáginas SciPy (scipy. signal talvez) no entanto, eu iria olhar primeiro na coleção de scikits SciPy. Identificar o (s) scikit (s) relevante (s) e procurar a função de interesse lá. Scikits são desenvolvidos independentemente pacotes baseados em NumPySciPy e dirigidos a uma determinada disciplina técnica (por exemplo, scikits-image. Scikits-learn, etc.) Vários destes foram (em particular, o incrível OpenOpt para otimização numérica) foram altamente considerados, projetos maduros longo Antes de escolher para residir sob a rubrica relativamente nova scikits. A página inicial do Scikits gostava de listar cerca de 30 scikits como esse. Embora pelo menos alguns deles não estejam mais em desenvolvimento ativo. Seguindo este conselho levaria você a scikits-timeseries no entanto, que o pacote não está mais em desenvolvimento ativo Em efeito, Pandas tornou-se, AFAIK, a biblioteca de série de facto NumPy-baseado. Pandas tem várias funções que podem ser usadas para calcular uma média móvel, o mais simples destes é provavelmente rollingmean. Que você usa assim: Agora, basta chamar a função rollingmean passando no objeto Series e um tamanho de janela. Que no meu exemplo abaixo é de 10 dias. Verificar que funcionou - por exemplo. Os valores comparados 10 - 15 na série original versus a nova série alisada com média de rolamento A função rollingmean, juntamente com cerca de uma dúzia de outras funções são agrupadas informalmente na documentação Pandas sob a rubrica move janela funciona um segundo grupo relacionado de funções Em Pandas é referido como funções exponencialmente ponderadas (eg ewma., Que calcula a média ponderada exponencialmente em movimento). O fato de que este segundo grupo não está incluído no primeiro (movendo funções de janela) é talvez porque as transformações ponderadas exponencialmente não dependem de uma janela de comprimento fixo Nós introduzimos anteriormente como criar médias móveis usando python. Este tutorial será uma continuação deste tópico. Uma média móvel no contexto da estatística, também chamada de média de rolamento, é um tipo de resposta ao impulso finito. Em nosso tutorial anterior traçamos os valores das matrizes x e y: Let8217s traçam x contra a média móvel de y que chamaremos yMA: Em primeiro lugar, let8217s equalizar o comprimento de ambos os arrays: E para mostrar isso no contexto: Gráfico: Para ajudar a entender isso, let8217s trama dois relacionamentos diferentes: x vs y e x vs MAy: A média móvel aqui é a parcela verde que começa em 3: Compartilhar este: Como este: Navegação de posts Deixar uma resposta Cancelar resposta Very useful I Gostaria de ler a última parte em grandes conjuntos de dados Espero que ele virá em breve8230 d bloggers como este: numpy. average Eixo ao longo do qual a média a. Se Nenhum. A média é feita sobre o arranjo achatado. Pesos. Arraylike, optional Uma matriz de pesos associados com os valores em a. Cada valor em a contribui para a média de acordo com seu peso associado. A matriz de pesos pode ser 1-D (caso em que seu comprimento deve ser o tamanho de a ao longo do eixo dado) ou da mesma forma que a. Se weightsNone. Então todos os dados em um são assumidos para ter um peso igual a um. devolvida . Bool, opcional O padrão é False. Se for verdade . A tupla (média de sumofweights) é retornada, caso contrário somente a média é retornada. Se weightsNone. Sumofweights é equivalente ao número de elementos sobre os quais a média é tomada. Média, sumofweights. Arraytype ou double Retorna a média ao longo do eixo especificado. Quando retornado é True. Retornar uma tupla com a média como o primeiro elemento ea soma dos pesos como o segundo elemento. O tipo de retorno é Float se a é de tipo inteiro, caso contrário, é do mesmo tipo que a. Sumofweights é do mesmo tipo que a média.
No comments:
Post a Comment